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Abstract
This paper focuses on the use of useful properties of sine, spherical Bessel
and reduced Bessel functions to simplify the application of the nonlinear
D- and D̄-transformations for accelerating the convergence of semi-infinite
very oscillatory integrals and to reduce the calculation times keeping a high
predetermined accuracy.

Three-centre nuclear attraction integrals, which are one of the most difficult
type involved in density functional theory methods when using a basis set of B
functions, are evaluated using the new approach.

The numerical results show the efficiency of the new method compared
with other alternatives.

PACS numbers: 0230G, 0230R, 0260, 21, 3115E

1. Introduction

In applied mathematics and in the numerical treatment of scientific problems, slowly
convergent or divergent sequences and series and oscillatory integrals occur abundantly.
Therefore, convergence accelerators and nonlinear transformation methods for accelerating the
convergence of infinite series and integrals have been invented and applied to various situations.
They are based on the idea of extrapolation. Their utility for enhancing and even inducing
convergence has been amply demonstrated by Shanks [1]. Via sequence transformations slowly
convergent and divergent sequences and series can be transformed into sequences and series
with hopefully numerical properties. Thus, they are useful for accelerating convergence. In the
case of nonlinear transformations the improvement of convergence can be remarkable. These

0305-4470/01/132801+18$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2801



2802 H Safouhi

methods form the basis of new methods for solving various problems which were unsolvable
otherwise and have many applications as well [2, 3].

In previous work [4–7], we have demonstrated the efficiency of the nonlinear
transformations D due to Levin and Sidi [8] and D̄ due to Sidi [9–11], in evaluating one-
and two-electron multicentre integrals overB functions via integral representations in terms of
non-physical variables. The application of these transformations depends strongly on the order
of the differential equation that the integrand satisfies. The approximations D(m)

n and D̄(m)
n ,

which converge very quickly to the exact value of the integral as n becomes large and where
m is the order of the differential equation satisfied by the integrand, are obtained by solving
sets of equations of the order of nm+ 1 and n(m− 1)+ 1, respectively, where the computation
of the m− 1 successive derivatives of the integrand and its nm + 1 or n(m− 1) + 1 successive
zeros is necessary. This presents severe numerical and computation difficulties when dealing
with one- and two-electron multicentre integrals especially when values of quantum numbers
are large.

We have shown [7, 12–15], that we can reduce the order of the linear differential equation
satisfied by the integrand f (x) = g(x)jλ(x), where jλ(x) is a spherical Bessel function, to
two keeping all the conditions to apply theD- and D̄-transformations satisfied. This led to the
HD and HD̄ methods, where the calculation of the successive derivatives of the integrand is
avoided and the orders of the linear sets of equations to solve are reduced to 2n + 1 and n + 1,
respectively. This led to a substantial gain in the calculation times, but it is still necessary for
the calculations to compute the 2n + 1 or n + 1 successive zeros of spherical Bessel function.

In this paper, we showed how we can use some useful properties of sine, spherical
Bessel and reduced Bessel functions to simplify the application of these above nonlinear
transformations and to further reduce the calculation times keeping the same high
predetermined accuracy. The calculation of the successive zeros and the computation of a
method for solving a linear set of equations are avoided.

Three-centre nuclear attraction integrals are evaluated using the new approach. These
integrals are the rate determining step of ab initio and density functional theory (DFT)
molecular structure calculations and they contribute to the total energy of the molecule.
The ab initio calculations using the LCAO-MO approach, where molecular orbitals are
built from a linear combination of atomic orbitals, are strongly dependent on the choice of
the basis functions for the reliability of the electronic distributions they provide. A good
atomic orbital basis should satisfy two pragmatic conditions for analytical solutions of the
appropriate Schrödinger equation, namely the cusp at the origin [16] and exponential decay at
infinity [17, 18].

Ab initio calculations are carried out mostly by using the so-called Gaussian-type functions
(GTFs) [19]. This is due to the fact that with GTFs the numerous molecular integrals can
be evaluated rather easily. Unfortunately, these Gaussian functions fail to satisfy the above
mathematical conditions for atomic electronic distributions.

The Schrödinger equation can be exactly solved for one-electron atoms such as hydrogen.
In this case we obtain hydrogen-like wavefunctions. It is convenient mathematically to use
linear combinations of these functions containing a single power of r . The obtained functions
which are called Slater-type functions (STFs) [20,21] satisfy the aforementioned requirements,
but the use of these functions as a basis set of atomic orbitals has been prevented by the fact
that their multicentre integrals are extremely difficult to evaluate for polyatomic molecules.

Various studies have focused on the use ofB functions that have been proposed by Shavitt
[22] and introduced by Filter and Steinborn [23,24]. These functions can be expressed as linear
combinations of STFs [24, 25]. Although B functions are more complicated than STFs, they
have some remarkable mathematical properties applicable to multicentre integral problems.



The evaluation of three-centre nuclear attraction integrals over B functions 2803

It was shown that B functions possess a relatively simple addition theorem [23, 25–27],
extremely compact convolution integrals [25,28] and their Fourier transform is of exceptional
simplicity [26, 29]. The B functions are well adapted to the Fourier transformation method
introduced by Bonham et al [30] and generalized by Steinborn et al [31, 32].

The Fourier transformation method, which is one of the most successful approaches for the
evaluation of multicentre integrals, allowed analytical expressions for the three-centre nuclear
attraction integrals over B functions to be developed. These analytical expressions involve
semi-infinite integrals, which oscillate quite strongly due to the presence of the spherical Bessel
function jλ(vx), in particular for large values of λ and v.

The molecular integrals under consideration are to be evaluated via a numerical quadrature
of integral representations in terms of non-physical integration variables. These integral
representations were derived with the help of the Fourier transformation method.

Numerical integration of oscillatory integrands is difficult, especially when the oscillatory
part is a spherical Bessel function and not a simple trigonometric function [33,34]. It is possible
to break up semi-infinite oscillatory integrals into infinite series of integrals of alternating sign.
These series are slowly convergent, that is why their use has been prevented. By using the
epsilon algorithm of Wynn [48] or Levin’s u transform [49], we can accelerate the convergence
of such infinite series but in the case of the semi-infinite integrals involved in the analytical
expressions of molecular integrals, the calculation times are prohibitively long for a sufficient
accuracy especially for large values of λ and v since the zeros of jλ(vx) become closer.

2. General definitions and properties

The spherical Bessel function jl(x) of the order of l ∈ N is defined by [35, 36]

jl(x) = (−1)l xl
(

d

x dx

)l
j0(x) = (−1)l xl

(
d

x dx

)l ( sin(x)

x

)
. (1)

jl(x) and its first derivative j ′
l (x) satisfy the recurrence relations [35, 36]:

xjl−1(x) + xjl+1(x) = (2l + 1)jl(x)

ljl−1(x)− (l + 1)jl+1(x) = (2l + 1)j ′
l (x).

(2)

For the following, we write jn
l+ 1

2
with n = 1, 2, . . . for the successive positive zeros of

jl(x). j 0
l+ 1

2
are assumed to be 0.

The reduced Bessel function k̂n+ 1
2
(z) is defined by [22, 23]

k̂n+ 1
2
(z) =

√
2

π
(z)n+ 1

2Kn+ 1
2
(z) = zn e−z

n∑
j=0

(n + j)!

j ! (n− j)!

1

(2 z)j
(3)

where Kn+ 1
2

denotes the modified Bessel function of the second kind [37].
The reduced Bessel functions satisfy the recurrence relation [22]

k̂n+ 1
2
(z) = (2n− 1) k̂n− 1

2
(z) + z2k̂(n−1)− 1

2
(z). (4)

A useful property satisfied by k̂n+ 1
2
(z) is given by [37]

(
d

z dz

)m k̂n+ 1
2
(z)

z2n+1
=
(

d

z dz

)m [√
π

2

Kn+ 1
2
(z)

zn+ 1
2

]
= (−1)m

k̂n+m+ 1
2
(z)

z2(n+m)+1
. (5)
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The B functions are defined as follows [23, 24]:

Bmn,l(ζ, �r) = (ζ r)l

2n+l(n + l)!
k̂n− 1

2
(ζ r) Yml (θ�r , ϕ�r ) (6)

where n, l,m are the quantum numbers and they are such that n = 1, 2, . . . , l = 0, 1, . . . , n−1
andm = −l,−l + 1, . . . , l− 1, l, and where Yml (θ, ϕ) denotes the surface spherical harmonic
and is defined explicitly using the Condon–Shortley phase convention as follows [38]:

Yml (θ, ϕ) = im+|m|
[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
]1/2

P
|m|
l (cos θ) eimϕ. (7)

Pml (x) is the associated Legendre polynomial of lth degree and mth order:

Pml (x) = (
1 − x2

)m/2 ( d

dx

)l+m [(x2 − 1
)l

2l l!

]
. (8)

The Rayleigh expansion of the plane wavefunctions is defined by [39]

e±i �p·�r =
+∞∑
l=0

l∑
m=−l

4π (±i)λ jl(| �p||�r|) Yml (θ�r , ϕ�r ) [Yml (θ �p, ϕ �p)]∗. (9)

The Fourier transform B
m

n,l(ζ, �p) of Bmn,l(ζ, �r) is given by [26, 29]

B
m

n,l(ζ, �p) = 1

(2π)3/2

∫
�r

e−i �p·�r Bmn,l(ζ, �r) d�r (10)

=
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Yml (θ �p, ϕ �p) (11)

the analytical expression of B
m

n,l(ζ, �p) is obtained by inserting the Rayleigh expansion of the
plane wavefunctions in (10).

The Slater-type orbitals are defined in normalized form according to the following
relationship [20, 21]:

χmn,l(ζ, �r) = N(n, ζ ) rn−1 e−ζ r Yml (θ�r , ϕ�r ) (12)

where N(n, ζ ) = ζ−n+1 [(2ζ )2n+1/(2n)!]1/2 denotes the normalization factor.
The Slater-type orbitals can be expressed as finite linear combinations ofB functions [24]:

χmn,l(ζ, �r) =
n−l∑
p=p̃

(−1)n−l−p(n− l)!2l+p(l + p)!

(2p − n− l)!(2n− 2l − 2p)!!
Bmp,l(ζ, �r) (13)

where

p̃ =
{
(n− l)/2 if n− l even

(n− l + 1)/2 if n− l odd
(14)

and where the double factorial is defined by

(2k)!! = 2 × 4 × 6 × · · · × (2k) = 2kk!

(2k + 1)!! = 1 × 3 × 5 × · · · × (2k + 1) = (2k + 1)!

2kk!
0!! = 1.

(15)
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The Fourier integral representation of the Coulomb operator 1
|�r− �R1| is given by [40]

1

|�r − �R1|
= 1

2π2

∫
�k

e−i�k·(�r− �R1)

k2
d�k. (16)

The Gaunt coefficients are defined as [41–47]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0
[Ym1
l1
(θ, ϕ)]∗Ym2

l2
(θ, ϕ)Y

m3
l3
(θ, ϕ) sin θ dθ dϕ. (17)

These coefficients linearize the product of two spherical harmonics:

[Ym1
l1
(θ, ϕ)]∗Ym2

l2
(θ, ϕ) =

l1+l2∑
l=lmin,2

〈l2m2|l1m1|lm2 −m1〉Ym2−m1
l (θ, ϕ) (18)

where the subscript l = lmin, 2 in the summation symbol implies that the summation index l
runs in steps of 2 from lmin to l1 + l2 and the constant lmin is given by [44]:

lmin =
{

max(|l1 − l2|, |m2 −m1|) if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is even

max(|l1 − l2|, |m2 −m1|) + 1 if l1 + l2 + max(|l1 − l2|, |m2 −m1|) is odd.

(19)

The three-centre nuclear attraction integrals over B functions are given by

In2,l2,m2
n1,l1,m1

=
∫

�R

[
B
m1
n1,l1

(
ζ1, �R − −→

OA
)]∗ 1

| �R − −→
OC|

B
m2
n2,l2

(
ζ2, �R − −→

OB
)

d �R (20)

where A, B and C are three arbitrary points of the Euclidean space E3, while O is the origin
of the fixed coordinate system.

By performing a translation of vector
−→
OA and substituting the integral representation of

the Coulomb operator (16) in the above equation, we can rewrite the above integral as

In2,l2,m2
n1,l1,m1

= 1

2π2

∫
ei�x· �R1

x2

〈
B
m1
n1,l1

(
ζ1, �r

)∣∣e−i�x·�r ∣∣Bm2
n2,l2

(
ζ2, �r − �R2

)〉
�r d�x (21)

where〈
B
m1
n1,l1

(
ζ1, �r

) ∣∣e−i�x·�r ∣∣Bm2
n2,l2

(
ζ2, �r − �R2

)〉
�r =

∫ [
B
m1
n1,l1

(
ζ1, �r

)]∗
e−i�x·�r Bm2

n2,l2

(
ζ2, �r − �R2

)
d�r

and where �r = �R − −→
OA, �R1 = −→

OC and �R2 = −→
AB.

3. Nonlinear transformations for improving convergence of semi-infinite integrals

For the following, we define A(γ ) for certain γ , as the set of infinitely differentiable functions
p(x), which have asymptotic expansions in inverse powers of x as x → +∞, of the
form

p(x) ∼ xγ
(
a0 +

a1

x
+
a2

x2
+ · · ·

)
(22)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in (22) term by term.

From (22) it follows that A(γ ) ⊃ A(γ−1) ⊃ . . . .
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We denote Ã(γ ) for some γ , the set of functions p(x) such that p(x) ∈ A(γ ) and
limx→+∞ x−γ p(x) �= 0. Thus, p ∈ Ã(γ ) has an asymptotic expansion in inverse powers
of x as x → +∞ of the form given by (22) with a0 �= 0. We define the functional α0(p) by
α0(p) = ao = limx→+∞ x−γ p(x).

We define eÃ
(k)

for some k as the set of g(x) = eφ(x) where φ(x) ∈ Ã(k).

Lemma 1. Let p(x) be in Ã(γ ) for some γ . Then:

(a) If γ �= 0 then p′(x) ∈ Ã(γ−1), otherwise p′(x) ∈ A(−2).
(b) If q(x) ∈ Ã(δ) then p(x)q(x) ∈ Ã(γ+δ) and α0(p q) = α0(p)α0(q).
(c) ∀k ∈ R, xkp(x) ∈ Ã(k+γ ) and α0(x

kp) = α0(p).
(d) The functional α0(cp) = c α0(p) for all constant c.
(e) If q(x) ∈ A(δ) and γ −δ > 0 then the function p(x)+q(x) ∈ Ã(γ ) and α0(p+q) = α0(p).

If γ = δ and α0(p) �= −α0(q) then the function p(x) + q(x) ∈ Ã(γ ) and α0(p + q) =
α0(p) + α0(q).

(f) For m > 0 an integer, pm(x) ∈ Ã(mγ ) and α0(p
m) = α0(p)

m.
(g) The function 1/p(x) ∈ Ã(−γ ) and α0(1/p) = 1/α0(p).

The proof of lemma 1 follows from the properties of Poincaré series.

Lemma 2. Let φ ∈ Ã(k) where k is a positive integer and k �= 0. The function k̂n+ 1
2
(φ(x)) ∈

Ã(n k)eÃ
(k)

and can be written in the following form

k̂n+ 1
2
(φ(x)) = φ1(x) e−φ(x)

where φ1 ∈ Ã(n k) and α0(φ1) = (α0(φ))
n �= 0.

By using the analytical expression of the reduced Bessel function which is given by
equation (3) and using the properties of Poincaré series, one can easily prove lemma 2.

Theorem 1 (see [8, 9]). Let f (x) be integrable on [0,+∞[ (i.e.
∫ +∞

0 f (t) dt exists) and
satisfies a linear differential equation of the order of m of the form:

f (x) =
m∑
k=1

pk(x)f
(k)(x) pk ∈ A(ik) ik � k. (23)

Also let limx→+∞ p
(i−1)
k (x) f (k−i)(x) = 0, i � k � m, 1 � i � m.

If for every integer l � −1,
∑m

k=1 l(l − 1) . . . (l − k + 1)pk,0 �= 1, where

pk,0 = lim
x→+∞ x

−kpk(x) 1 � k � m

then as x → +∞:∫ +∞

x

f (t) dt ∼
m−1∑
k=0

f (k)(x)xjk
(
β0,k +

β1,k

x
+
β2,k

x2
+ · · ·

)
(24)

where

jk � max(ik+1, ik+2 − 1, . . . , im −m + k + 1), k = 0, 1, . . . , m− 1.
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The approximation D(m)
n of

∫∞
0 f (t) dt , using the nonlinear D-transformation, satisfies

the (nm + 1) equations given by [8]

D(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=0

f (k)(xl)x
σk
l

n−1∑
i=0

β̄k,i

xil
l = 0, 1, . . . , nm. (25)

σk for k = 0, 1, . . . , m − 1, are the minima of k + 1 and sk where sk is the largest of the
integers s for which limx→+∞ xsf (k)(x) = 0.

D(m)
n and β̄k,i for k = 0, 1, . . . , m − 1, i = 0, 1, . . . , n − 1 are the (nm + 1) unknowns.

The xl, l = 0, 1, . . . are chosen to satisfy 0 < x0 < x1 < · · · and liml→+∞ xl = +∞.
The order of the above set of equations can be reduced to n(m − 1) + 1 by choosing

xl, l = 0, 1, . . . to be the leading positive zeros of f (x). In this case (25) can be rewritten
as [9]

D̄(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=1

f (k)(xl)x
σk
l

n−1∑
i=0

β̄k,i

xil
l = 0, 1, . . . , n(m− 1). (26)

In previous work [4–7], we have shown the efficiency of the nonlinear D- and D̄-
transformations in accelerating the convergence of semi-infinite highly oscillatory integrals
occurring in the analytical expressions of multicentre bielectronic integrals, in particular the
three-centre nuclear attraction integral over B functions, compared with other alternatives,
namely the Gauss–Laguerre quadrature, the epsilon algorithm of Wynn [48] and Levin’s
u-transform [49], which accelerate the convergence of the semi-infinite integrals after
transforming them into infinite series (see equation (45)).

As can be seen from (25) and (26), the calculation of the (m − 1) successive derivatives
of the integrand and its nm or n(m − 1) successive zeros is necessary to apply the D-
and D̄-transformations. This presents severe numerical and computational difficulties when
we evaluate multicentre bielectronic integrals, in particular when the values of the quantum
numbers ni , li andmi are large. The order of the linear set of equations to solve for calculating
the approximation D̄(m)

n of the semi-infinite integral is equal to n(m − 1) + 1, thus when the
values of m and n are large, the calculations become very difficult. In the case of multicentre
integrals m is equal to 4 when dealing with three-centre one- and two-electron integrals and 6
for four-centre two-electron integrals.

Now, let us consider a function f (x) of the form f (x) = g(x)jλ(x).
Now, we shall state a theorem which is proven in [7, 12, 14].

Theorem 2 (see [7, 12, 14]). Let g(x) = h(x) eφ(x) be in C2([0,+∞[), which is the set of
functions that are twice continuously differentiable on [0,+∞[, where h(x) ∈ Ã(γ ) for some
γ and φ(x) ∈ Ã(k) for some k.

The function f (x) = g(x)jλ(x) satisfies a second-order linear differential equation given
by

f (x) = p1(x)f
′(x) + p2(x)f

′′(x) (27)

where

p1(x) ∈ A(−1) and p2(x) ∈ A(0) if k = 0

p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2) if k �= 0.

Furthermore, if k > 0 and α0(φ) < 0, then f (x) is integrable on [0,+∞[ and satisfies all the
conditions to apply the D- and D̄-transformations.
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The approximation HD(2)
n of

∫ +∞
0 f (t) dt using the D-transformation is given by

HD(2)
n =

∫ xl

0
f (t) dt +

1∑
k=0

f (k)(xl) x
k+1
l

n−1∑
i=0

β̄k,i

xil
l = 0, 1, . . . , 2n (28)

HD(2)
n and β̄k,i , i = 0, 1, . . . , n − 1 and k = 0, 1 are the (2n + 1) unknowns of the above

linear system.
By choosing xl = j l+1

λ+ 1
2

for l = 0, 1, . . . and using the fact that for all l = 1, 2, . . . ,

f ′(xl) = g(xl) j
′
λ(xl), the above set of equations can be re-expressed as

HD̄(2)
n =

∫ xl

0
f (t) dt + g(xl)j

′
λ(xl)x

2
l

n−1∑
i=0

β̄1,i

xil
l = 0, 1, . . . , n (29)

HD̄(2)
n and β̄1,i , i = 0, 1, . . . , n− 1 are the (n + 1) unknowns of the above linear system.

In [14, 15], we showed that all the integrands of semi-infinite integrals involved in
the analytical expressions of multicentre bielectronic integrals over B functions satisfy
the conditions of theorem 2, and consequently they satisfy second-order linear differential
equations of the form required to apply the D- and D̄-transformations. The HD and HD̄
methods led to great simplification, the calculation of the successive derivatives is avoided,
we only need to calculate the first derivative of the spherical Bessel function jλ(x), which is
very simple as can be seen from (2). The orders of the linear systems to solve using the HD̄
method are reduced to n+1. This led to a substantial reduction in the calculation times for high
predetermined accuracy, but it is still necessary to compute the n successive zeros of jλ(x) and
a method to solve the linear system (29).

In this paper, we focused on the use of some properties of sine, reduced Bessel and
spherical Bessel functions, to simplify the application of these nonlinear transformations and
to further reduce the calculation times keeping the same high predetermined accuracy.

Theorem 3. Let f (x) be a function of the form

f (x) = g(x)jλ(x)

where g(x) is in C2([0,+∞[) and of the form g(x) = h(x) eφ(x) and where h(x) ∈ Ã(γ )

and φ(x) ∈ Ã(k) for some γ and k. If k > 0, α0(ϕ) < 0 and for all l = 0, . . . , λ − 1,

limx→0 x
l−λ+1

(
d
x dx

)l (
xλ−1g(x)

)
jλ−1−l(x) = 0 then f (x) is integrable on [0,+∞[ and an

approximation of
∫ +∞

0 f (x) dx is given by

SD̄(2,j)
n =

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2
i+jG(xi+j )

]
∑n+1

i=0

(
n+1
i

)
(1 + i + j)n

/[
x2
i+jG(xi+j )

] (30)

where xl = (l + 1)π for l = 0, 1, . . . , G(x) = (
d
x dx

)λ (
xλ−1g(x)

)
and where F(x) =∫ x

0 G(t) sin(t) dt .

Proof. Let us consider
∫ +∞

0 f (x) dx = ∫ +∞
0 g(x) jλ(x). By replacing the spherical Bessel

function jλ(x) by its analytical expression given by (1), we obtain∫ +∞

0
f (x) dx = (−1)λ

∫ +∞

0
xλ g(x)

(
d

x dx

)λ
j0(x) dx. (31)
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Integrating by parts the right-hand side of (31), we obtain∫ +∞

0
f (x) dx = (−1)λ

[
xλ−1 g(x)

(
d

x dx

)λ−1

j0(x)

]+∞

0

+(−1)λ−1
∫ +∞

0

[(
d

x dx

) (
xλ−1 g(x)

) ][( d

x dx

)λ−1

j0(x)

]
x dx. (32)

By integrating by parts until all the derivatives of j0(x) disappear in the last term on the
right-hand side of (32), one can obtain∫ +∞

0
f (x) dx =

[
λ−1∑
l=0

(−1)λ+l

((
d

x dx

)l (
xλ−1g(x)

))(( d

x dx

)λ−1−l
j0(x)

)]+∞

0

+
∫ +∞

0

[(
d

x dx

)λ (
xλ−1 g(x)

)]
j0(x) x dx. (33)

Using equation (1) and replacing j0(x) by sin(x)
x

, the above equation can be rewritten as
follows:∫ +∞

0
f (x) dx = −

[
λ−1∑
l=0

xl−λ+1

((
d

x dx

)l (
xλ−1g(x)

))
jλ−1−l(x)

]+∞

0

+
∫ +∞

0

[(
d

x dx

)λ (
xλ−1 g(x)

)]
sin(x) dx. (34)

The function g(x) is exponentially decreasing as x → +∞, thus the function(
d
x dx

)l (
xλ−1g(x)

)
is also exponentially decreasing as x → +∞. From this it follows that

∀ l � 0, limx→+∞ xl−λ+1
[(

d
x dx

)l (
xλ−1g(x)

)]
jλ−1−l(x) = 0.

As limx→0 x
l−λ+1

[(
d
x dx

)l (
xλ−1g(x)

)]
jλ−1−l(x) = 0 for l = 0, . . . , λ − 1 then the first

term on the right-hand side of (34) vanishes and therefore (34) can be rewritten as

∫ +∞

0
f (x) dx =

∫ +∞

0

[(
d

x dx

)λ (
xλ−1 g(x)

)]
sin(x) dx. (35)

Let us consider the functionG(x) = (
d
x dx

)λ (
xλ−1 g(x)

)
. By using the Leibnitz formulae,

we can obtain

G(x) =
λ∑
i=0

λ!!

(λ− 2i)!!
xλ−2i

(
d

x dx

)λ−i
g(x)

=
λ∑
i=0

λ−i∑
m=0

λ!!

(λ− 2i)!!

(
λ− i

m

)
xλ−2i

[(
d

x dx

)m
h(x)

][(
d

x dx

)λ−i−m
eφ(x)

]
.

(36)

Using the properties of asymptotic expansions given by lemma 1, we can show that(
d

x dx

)m
h(x) ∈ A(γ−2m)

(
d

x dx

)α
eφ(x) = ϕ(x) eφ(x) where ϕ ∈ A(α(k−2))
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and consequently

xλ−2i

[(
d

x dx

)m
h(x)

][(
d

x dx

)λ−i−m
eφ(x)

]
= Hi,m(x) eφ(x)

where the function Hi,m(x) ∈ A(γ+(λ−i−m)k−λ).
Now, by using lemma 1, we can easily show that the function G(x) can be rewritten as

G(x) = H(x) eφ(x) where H(x) ∈ Ã(γ+λk−λ). (37)

sin(x) satisfies a second-order linear differential equation given by

sin(x) = − sin′′(x). (38)

If we consider F(x) = G(x) sin(x) then sin(x) = F(x)/G(x). By substituting this in the
above differential equation after replacing G(x) by H(x) eφ(x), we can obtain a second-order
linear differential equation satisfied by F(x), which is given by

F(x) = q1(x)F ′(x) + q2(x)F ′′(x) (39)

where the coefficients q1(x) and q2(x) are defined by

q1(x) = 2
(
φ′(x) +H ′(x)/H(x)

)
1 + (φ′(x) +H ′(x)/H(x))2 − (φ′(x) +H ′(x)/H(x))′

q2(x) = −1

1 + (φ′(x) +H ′(x)/H(x))2 − (φ′(x) +H ′(x)/H(x))′
.

(40)

Using lemma 1, we can show that if k = 0 then q1(x) ∈ A(−1) and q2(x) ∈ A(0), otherwise
q1(x) ∈ A(−k+1) and q2(x) ∈ A(−k+1).

If k > 0 and α0(φ) < 0 then the function F(x) is exponentially decreasing as
x → +∞ and consequently is integrable on [0,+∞[ and for all l = i, 2, i = 1, 2,
limx→+∞ q

(i−1)
l (x)F (l−i)(x) = 0.

It is easy to show that qi,0 = limx→+∞ x−iqi(x) = 0 for i = 1, 2, thus for every integer
l � −1,

∑m
i=1 l(l − 1) . . . (l − i + 1)qi,0 = 0 �= 1.

All the conditions of the applicability of theD- and D̄-transformations are now shown to
be satisfied by F(x).

The approximation of
∫ +∞

0 F(x) dx = ∫ +∞
0 f (x) dx using D̄ is given by

SD̄(2)
n =

∫ xl

0
G(x) sin(x) dx + (−1)l+1G(xl) x

2
l

n−1∑
i=0

β̄1,i

xil
l = 0, 1, . . . , n (41)

where xl = (l + 1)π for l = 0, 1, . . . .
Now, following Levin in [49], we can use Cramer’s rule, since the zeros of sin(x) are

equidistant, to obtain a simple solution for the unknown SD̄(2)
n , which is an approximation of∫ +∞

0 f (x) dx and which is given by (30). �

4. Three-centre nuclear attraction integrals over B functions

These integrals are defined by (21) and can be re-expressed as [31, 32]:

In2,l2,m2
n1,l1,m1

= 1

2π2

∫
ei�x·( �R1− �R2)

x2

〈
B
m1

n1,l1
(ζ1, �q)

∣∣e−i�q· �R2
∣∣Bm2

n2,l2

(
ζ2, �q + �x)〉�q d�x. (42)
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The analytic expression involving the semi-infinite highly oscillatory integral was obtained
for the above integral by applying the Fourier-transform method after substituting the analytical
expression of the Fourier transform of the B function (11) into the above equation and using
the Rayleigh expansion of the plane wavefunctions (9) and the Feynman’s identity, which is
given by

(ab)−1 =
∫ 1

0
[a + (b − a)s]−2 ds.

The expression of In2,l2,m2
n1,l1,m1

is given by [31, 32]

In2,l2,m2
n1,l1,m1

= 8(4π)2(2l1 + 1)!!(2l2 + 1)!!
(n1 + l1 + n2 + l2 + 1)!

(n1 + l1)!(n2 + l2)!
ζ

2n1+l1−1
1 ζ

2n2+l2−1
2

×
l1∑
l′1=0

l′1∑
m′

1=−l′1
(i)l1+l′1(−1)l

′
1
〈l1m1|l′1m′

1|l1 − l′1m1 −m′
1〉

(2l′1 + 1)!![2(l1 − l′1) + 1]!!

×
l2∑
l′2=0

l′2∑
m′

2=−l′2
(i)l2+l′2(−1)l

′
2
〈l2m2|l′2m′

2|l2 − l′2m2 −m′
2〉

(2l′2 + 1)!![2(l2 − l′2) + 1]!!

×
l′2+l′1∑

l=l′min,2

〈l′2m′
2|l′1m′

1|lm′
2 −m′

1〉Rl2 Ym
′
2−m′

1
l (θ �R2

, ϕ �R2
)

×
l2−l′2+l1−l′1∑
λ=l′′min,2

(−i)λ〈l2 − l′2m2 −m′
2|l1 − l′1m1 −m′

1|λµ〉

×
9l∑
j=0

(
9l

j

)
(−1)j

2n1+n2+l1+l2−j+1(n1 + n2 + l1 + l2 − j + 1)!

×
∫ 1

s=0
sn2+l1+l2−l′1 (1 − s)n1+l1+l2−l′2 Yµλ (θ�v, ϕ�v)

×
[∫ +∞

x=0
xnx

k̂ν[R2γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx

]
ds (43)

where

[γ(s, x)]2 = (1 − s)ζ 2
1 + sζ 2

2 + s(1 − s)x2

�v = (1 − s) �R2 − �R1 v = ‖�v‖ and R2 = ‖ �R2‖
nx = l1 − l′1 + l2 − l′2 and 9l = [(l′1 + l′2 − l)/2]

nγ = 2(n1 + l1 + n2 + l2)− (l′1 + l′2)− l + 1

ν = n1 + n2 + l1 + l2 − l − j + 1
2

µ = (m2 −m′
2)− (m1 −m′

1).

The constant lmin is given by (19).
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The semi-infinite x integral involved in the above equation, which will be referred to as
Ĩ(s), is defined by

Ĩ(s) =
∫ +∞

0
xnx

k̂ν[R2γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx (44)

=
+∞∑
n=0

∫ jn+1
λ,v /v

jnλ,v

xnx
k̂ν[R2γ(s, x)]

[γ(s, x)]nγ
jλ(vx) dx (45)

where j 0
λ,v is assumed to be zero and jnλ,v = jn

λ+ 1
2
/v, n = 1, 2, . . . which are the successive

zeros of jλ(vx).
The numerical difficulties in the evaluation of the analytical expression (43) arise mainly

from the presence of the semi-infinite integral Ĩ(s), whose integrand oscillates rapidly due to
the presence of the spherical Bessel function especially for large values of λ and v.

In previous work [12, 14], we demonstrated the superiority of HD̄ in the evaluation of
these kind of semi-infinite integrals compared with D̄. The approximation HD̄(2)

n of Ĩ(s) is
given by

HD̄(2)
n =

∫ xl

0
f (t) dt + g(xl) j

′
λ(vx)x

2
l

n−1∑
i=0

β̄1,i

xil
l = 0, 1, 2, . . . , n (46)

where f (x) is the integrand of Ĩ(s) and

g(x) = xnx
k̂ν [R2γ(s, x)]

[γ(s, x)]nγ

and where xl = j lλ,v for l = 0, 1, . . . .

Now, let us consider the integrand f (x) of Ĩ(s), which is given by

f (x) = g(x) jλ(vx) where g(x) = xnx
k̂ν [R2γ(s, x)]

[γ(s, x)]nγ
∈ C2([0,+∞[).

Let the function φ(x) = R2γ(s, x). It can be rewritten as

φ(x) = R2

√
(1 − s)ζ 2

1 + sζ 2
2 + s(1 − s)x2 ∈ Ã(1) (

lemma 1 for m = 1
2

)
.

From lemma 1, it follows that 1
[γ(s,x)]nγ ∈ Ã(−nγ ).

By using the lemmas 1 and 2, g(x) can be re-expressed as follows:

g(x) = h(x) e−φ(x) h ∈ Ã(n+nx−nγ ) and φ ∈ Ã(1) with α0(φ) > 0.

Let the function

;(x) = k̂ν [R2γ(s, x)]

[γ(s, x)]nγ

then g(x) = xnx;(x) where nx is given by equation (43). For all l in {0, 1, . . . , λ− 1}:

xl−λ+1

(
d

x dx

)l (
xλ−1g(x)

) = xl−λ+1

(
d

x dx

)l (
xnx+λ−1;(x)

)

=
l∑
i=0

(
l

i

)
(nx + λ− 1)!!

(nx + λ− 1 − 2i)!!
xnx+l−2i

(
d

x dx

)l−i
;(x). (47)
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The function ;(x) is defined for x = 0. From equation (5), we can easily show that for

all positive integers i,
(

d
x dx

)i
;(x) is also defined for x = 0.

According to equation (43), nx = l2 − l′2 + l1 − l′1. The integer λ varies from lmin which
is given by equation (19) to l2 − l′2 + l1 − l′1 = nx , thus for all l = 0, 1, . . . , λ − 1, l < nx .
Consequently, for all i = 0, 1, . . . , l, the integer nx + l − 2i � 1.

From the above arguments it follows that for all l = 0, . . . , λ− 1:

lim
x→0

xl−λ+1

[(
d

x dx

)l (
xλ−1g(x)

)]
jλ−1−l(x) = 0.

All the conditions of theorem 3, are now shown to be satisfied by the integrand f (x). The
semi-infinite integral Ĩ(s) can be rewritten as

Ĩ(s) = 1

vλ+1

∫ +∞

0

[(
d

x dx

)λ (
xnx+λ−1 k̂ν[R2γ(s, x)]

[γ(s, x)]nγ

)]
sin(vx) dx (48)

= 1

vλ+1

+∞∑
n=0

∫ (n+1)π/v

nπ/v

[(
d

x dx

)λ (
xnx+λ−1 k̂ν[R2γ(s, x)]

[γ(s, x)]nγ

)]
sin(vx) dx. (49)

The approximation of Ĩ(s) is given by

SD̄(2,j)
n = 1

vλ+1

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2
i+jG(xi+j )

]
∑n+1

i=0

(
n+1
i

)
(1 + i + j)n

/[
x2
i+jG(xi+j )

] (50)

where xl = (l + 1) π
v

for l = 0, 1, . . . , G(x) = (
d
x dx

)λ (
xλ−1g(x)

)
and where F(x) =∫ x

0 G(t) sin(vt) dt .
Let us consider G(x). Using equation (5) and the fact that d

dx = dz
dx

d
dz , we obtain for

α, j ∈ N in the case where nγ < 2ν:(
d

x dx

)j (
xα
k̂ν [R2γ(s, x)]

[γ(s, x)]nγ

)
=

j∑
l=0

(
j

l

)
α!!

(α − 2l))!!
xα−2l

j−l∑
i=0

(
j − l

i

)

×(−1)j−l−i
(2ν − nγ )!!

(2ν − nγ − 2i)!!
si(1 − s)i

k̂ν+j−l−i [R2γ(s, x)]

[γ(s, x)]nγ +2i (51)

and for nγ = 2ν, we obtain(
d

x dx

)j (
xα
k̂ν [R2γ(s, x)]

[γ(s, x)]nγ

)
=

j∑
l=0

(−1)j−l
(
j

l

)
α!!

(α − 2l))!!
xα−2l

×sj−l(1 − s)j−l
k̂ν+j−l [R2γ(s, x)]

[γ(s, x)]2(ν+j−l) . (52)

As can be seen from the above equations, the calculation of G(x) does not present any
computational difficulties. The use of equation (50) for calculating the approximation of Ĩ(s)
is more advantageous than the use of the linear systems (26) or (29) where the computational
of the (n+1) successive zeros of spherical Bessel function is necessary and where it is required
to compute a method for solving linear systems which is much more time consuming than the
use of Cramer’s rule.
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5. Numerical results and discussion

The finite integrals involved in equations (45) and (49) are evaluated using Gauss–Legendre
quadrature of the order of 16. The finite integrals involved in equations (46) and (50) are
transformed to finite sums:∫ xn

0
f (x) dx =

n−1∑
l=0

∫ xl+1

xl

f (x) dx.

The terms of the above finite sum are evaluated using Gauss–Legendre quadrature of the
order of 16.

The values with 15 correct decimal places are obtained for the integrals by using the
infinite series (45) and (49) which we sum until max (see tables 1, 2, 5 and 6).

Table 1. Values of Ĩ(s) obtained with 15 correct decimal places by using the infinite series (45).

s ν nγ nx λ R1 ζ1 R2 ζ2 Max Ĩ(s)
0.01 5

2 5 0 0 6.31 1.0 2.0 1.0 156 0.638 243 453 884 445D+00

0.99 5
2 5 0 0 4.50 2.0 1.5 1.0 202 0.701 581 269 512 310D+00

0.99 9
2 9 1 1 6.00 2.0 3.5 1.0 145 0.183 138 910 224 196D+01

0.99 9
2 9 2 1 6.00 2.0 3.0 1.0 195 0.476 698 176 142 361D+00

0.01 9
2 9 2 1 8.50 2.0 3.5 2.0 156 0.248 336 723 989 967D−03

0.01 9
2 9 2 2 9.00 2.0 3.5 1.0 206 0.183 269 571 025 289D−02

0.99 13
2 11 3 3 6.50 2.5 3.5 2.0 239 0.993 192 009 882 242D−02

0.01 13
2 13 3 3 7.50 2.0 3.5 1.0 134 0.181 139 626 222 753D−01

Table 2. Values of Ĩ(s) obtained with 15 correct decimal places by using the infinite series (49).

s ν nγ nx λ R1 ζ1 R2 ζ2 Max Ĩ(s)
0.01 5

2 5 0 0 6.31 1.0 2.0 1.0 156 0.638 243 453 884 445D+00

0.99 5
2 5 0 0 4.50 2.0 1.5 1.0 202 0.701 581 269 512 310D+00

0.99 9
2 9 1 1 6.00 2.0 3.5 1.0 145 0.183 138 910 224 197D+01

0.99 9
2 9 2 1 6.00 2.0 3.0 1.0 195 0.476 698 176 142 352D+00

0.01 9
2 9 2 1 8.50 2.0 3.5 2.0 156 0.248 336 723 989 985D−03

0.01 9
2 9 2 2 9.00 2.0 3.5 1.0 206 0.183 269 571 025 634D−02

0.99 13
2 11 3 3 6.50 2.5 3.5 2.0 239 0.993 192 007 213 570D−02

0.01 13
2 13 3 3 7.50 2.0 3.5 1.0 134 0.181 139 626 222 771D−01

The linear set of equations (46) is solved using the LU decomposition method.
In the evaluation of In200

n100 which is given by equation (43) we let nx and λ vary to compare
the efficiency of the new method in the evaluation of semi-infinite integrals whose integrands
are very oscillating.

The numerical values of the semi-infinite integral Ĩ(s), are obtained for s = 0.01 or 0.99.
In this region, the integrand oscillates rapidly. If we let s = 0 or 1, the integrand will be
reduced to the term xnx jλ(vx), because the terms

k̂ν[R2γ(s, x)]

[γ(s, x)]nγ
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Table 3. Evaluation of Ĩ(s) using HD̄(2)
n (29).

s ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error

0.01 5
2 5 0 0 6.31 1.0 2.0 1.00 9 0.638 243 4540D+00 0.73D−10

0.99 5
2 5 0 0 4.50 2.0 1.5 1.00 6 0.701 581 2749D+00 0.54D−08

0.99 9
2 9 1 1 6.00 2.0 3.5 1.00 6 0.183 138 9173D+01 0.71D−07

0.99 9
2 9 2 1 6.00 2.0 3.0 1.00 8 0.476 698 1567D+00 0.19D−07

0.01 9
2 9 2 1 8.50 2.0 3.5 2.00 7 0.248 336 7950D−03 0.71D−10

0.01 9
2 7 2 2 9.00 2.0 3.5 1.00 6 0.183 269 5268D−02 0.44D−09

0.99 13
2 11 3 3 6.50 2.5 3.5 2.00 9 0.993 191 9510D−02 0.59D−09

0.01 13
2 13 3 3 7.50 2.0 3.5 1.00 7 0.181 139 5757D−01 0.50D−08

Table 4. Evaluation of Ĩ(s) using SD̄(2,5)
n (50).

s ν nγ nx λ R1 ζ1 R2 ζ2 n Ĩ(s) Error

0.01 5
2 5 0 0 6.31 1.0 2.0 1.00 9 0.638 243 4538D+00 0.74D−10

0.99 5
2 5 0 0 4.50 2.0 1.5 1.00 6 0.701 581 2695D+00 0.13D−10

0.99 9
2 9 1 1 6.00 2.0 3.5 1.00 6 0.183 138 9102D+01 0.25D−10

0.99 9
2 9 2 1 6.00 2.0 3.0 1.00 8 0.476 698 1761D+00 0.31D−10

0.01 9
2 9 2 1 8.50 2.0 3.5 2.00 7 0.248 336 7149D−03 0.91D−11

0.01 9
2 7 2 2 9.00 2.0 3.5 1.00 6 0.183 269 5716D−02 0.57D−11

0.99 13
2 11 3 3 6.50 2.5 3.5 2.00 9 0.993 192 0012D−02 0.87D−10

0.01 13
2 13 3 3 7.50 2.0 3.5 1.00 7 0.181 139 6261D−01 0.81D−11

Table 5. Values of In200
n100 with 15 correct decimal places obtained by using the semi-infinite series

(45) for evaluating the semi-infinite integrals.

n1 n2 nγ nx λ R1 ζ1 R2 ζ2 In200
n100

1 1 5 0 0 6.00 2.50 2.50 1.50 0.985 707 949 076 0591D−01
2 1 7 1 1 4.50 1.50 2.50 1.00 0.876 172 059 571 9185D+00
2 1 7 2 1 5.50 2.50 1.50 1.50 0.302 146 653 451 6112D−01
2 2 9 2 2 9.00 1.00 1.50 0.50 0.445 961 267 998 7873D+00
2 2 9 3 2 7.00 2.00 3.50 1.00 0.152 962 414 830 2400D−01
3 2 11 3 3 3.50 1.00 2.00 1.00 0.291 429 448 234 6616D+01
3 3 13 3 3 8.50 2.00 2.50 1.50 0.175 035 053 459 4521D−01
4 3 15 4 4 4.00 1.50 1.50 1.00 0.167 986 460 269 3797D+01
4 4 17 4 4 4.50 0.50 1.00 1.00 0.472 323 260 481 3232D+00

becomes a constant and hence the exponential decreasing part k̂ν of the integrands becomes a
constant and thus the rapid oscillations of jλ(vx) cannot be damped and suppressed. The
asymptotic behaviour of the integrand cannot be represented by a function of the form
e−αx jλ(x).

We also note that the region close to s = 0 or 1 carry a very small weight because of their
expressions si2(1 − s)i1 in the integrals (43) [50–53].
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Table 6. Values of In200
n100 with 15 correct decimal places obtained by using the semi-infinite series

(49) for evaluating the semi-infinite integrals.

n1 n2 nγ nx λ R1 ζ1 R2 ζ2 In200
n100

1 1 5 0 0 6.00 2.50 2.50 1.50 0.985 707 949 076 0592D−01
2 1 7 1 1 4.50 1.50 2.50 1.00 0.876 172 059 571 9185D+00
2 1 7 2 1 5.50 2.50 1.50 1.50 0.302 146 653 451 6114D−01
2 2 9 2 2 9.00 1.00 1.50 0.50 0.445 961 267 998 7876D+00
2 2 9 3 2 7.00 2.00 3.50 1.00 0.152 962 414 830 2401D−01
3 2 11 3 3 3.50 1.00 2.00 1.00 0.291 429 448 235 4614D+01
3 3 13 3 3 8.50 2.00 2.50 1.50 0.175 035 053 459 4524D−01
4 3 15 4 4 4.00 1.50 1.50 1.00 0.167 986 460 269 3796D+01
4 4 17 4 4 4.50 0.50 1.00 1.00 0.472 323 260 481 3232D+00

Table 7. Evaluation of In200
n100 using HD̄(2)

n for evaluating the semi-infinite integrals.

n1 n2 nγ nx λ R1 ζ1 R2 ζ2 n In200
n100 Error

1 1 5 0 0 6.00 2.50 2.50 1.50 8 0.985 707 949 061D−01 0.15D−11
2 1 7 1 1 4.50 1.50 2.50 1.00 6 0.876 172 059 815D+00 0.24D−09
2 1 7 2 1 5.50 2.50 1.50 1.50 9 0.302 146 652 701D−01 0.75D−10
2 2 9 2 2 9.00 1.00 1.50 0.50 7 0.445 961 265 550D+00 0.24D−08
2 2 9 3 2 7.00 2.00 3.50 1.00 7 0.152 962 409 896D−01 0.49D−09
3 2 11 3 3 3.50 1.00 2.00 1.00 7 0.291 429 448 221D+01 0.13D−09
3 3 13 3 3 8.50 2.00 2.50 1.50 7 0.175 035 042 045D−01 0.11D−08
4 3 15 4 4 4.00 1.50 1.50 1.00 7 0.167 986 460 265D+01 0.48D−10
4 4 17 4 4 4.50 0.50 1.00 1.00 6 0.472 323 260 506D+00 0.24D−10

Table 8. Evaluation of In200
n100 using SD̄(2,5)

n for evaluating the semi-infinite integrals.

n1 n2 nγ nx λ R1 ζ1 R2 ζ2 n In200
n100 Error

1 1 5 0 0 6.00 2.50 2.50 1.50 5 0.985 707 949 076D−01 0.38D−13
2 1 7 1 1 4.50 1.50 2.50 1.00 6 0.876 172 059 631D+00 0.59D−10
2 1 7 2 1 5.50 2.50 1.50 1.50 7 0.302 146 653 118D−01 0.33D−10
2 2 9 2 2 9.00 1.00 1.50 0.50 6 0.445 961 268 947D+00 0.95D−09
2 2 9 3 2 7.00 2.00 3.50 1.00 6 0.152 962 414 961D−01 0.13D−10
3 2 11 3 3 3.50 1.00 2.00 1.00 6 0.291 429 448 236D+01 0.85D−11
3 3 13 3 3 8.50 2.00 2.50 1.50 7 0.175 035 059 369D−01 0.59D−09
4 3 15 4 4 4.00 1.50 1.50 1.00 6 0.167 986 460 270D+01 0.57D−11
4 4 17 4 4 4.50 0.50 1.00 1.00 6 0.472 323 260 531D+00 0.50D−10

6. Conclusion

This work presents a new approach for improving convergence of semi-infinite oscillatory
integrals whose integrands are of the form f (x) = g(x)jλ(x) and where g(x) = h(x) eφ(x).

The properties of the spherical Bessel and sine functions allowed the use of Cramer’s rule
for calculating the approximations SD̄(2,j)

n of the semi-infinite integrals. This led to a great
simplification in the calculations since the computation of the successive zeros of the spherical
Bessel function and a method to solve the linear systems are avoided.

The numerical results show the high accuracy obtained by applying the SD̄ method. The
three-centre nuclear attraction integrals which contribute to total molecular energies can be
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obtained to a precision of 10−10 au which is quite sufficient for energies of chemical processes.
In the molecular context, many millions of such integrals are required for close-range terms
(long-range terms being treated by asymptotic expansions or multipole approaches), therefore
rapidity is the primordial criterion when the precision has been reached.

TheSD̄method is also able to reach a precision of 10−15 au and certainly some applications
of this extremely high accuracy will be developed in future work.
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[43] Sébilleau D 1998 On the computation of the integrated product of three spherical harmonics J. Phys. A: Math.

Gen. 31 7157
[44] Weniger E J and Steinborn E O 1982 Programs for the coupling of spherical harmonics Comput. Phys. Commun.

25 149
[45] Xu Y-L 1996 Fast evaluation of Gaunt coefficients Math. Comput. 65 1601
[46] Xu Y-L 1997 Fast evaluation of Gaunt coefficients: recursive approach J. Comput. Appl. Math. 85 53
[47] Xu Y-L 1998 Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories J.

Comput. Phys. 139 137
[48] Wynn P 1956 On a device for computing the em(Sn) transformation Math. Tables Aids Comput. 10 91
[49] Levin D 1973 Developement of non-linear transformations for improving convergence of sequences Int. J.

Comput. Math. B 3 371
[50] Homeier H H H and Steinborn E O 1992 Improved quadrature methods for the Fourier transform of a two-center

product of exponential-type basis functions Int. J. Quantum Chem. 41 399
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